

Detection of Parkinson's Disease Using Automated Tunable Q Wavelet Transform (A-TQWT) Technique with EEG Signals

Digital Signal Processing

Erasmus Mundus Joint Master Degree in Medical Imaging and Applications

Md Imran Hossain & Muhammad Zain Amin

Parkinson's Disease

- Parkinson's disease is a brain disorder that causes unintended or uncontrollable movements, such as shaking, stiffness, and difficulty with balance and coordination.
- It affects the **nervous system** and the parts of the body controlled by the nerves.
- It is a neurodegenerative disorder that affects predominately the dopamine-producing ("dopaminergic") neurons in a specific area of the brain called substantianigra.

Symptoms of Parkinson's Disease

- Involuntary shaking of particular parts of the body such as hands, arms, legs, jaw, or head (tremor).
- Slow movement.
- Depression and anxiety.
- Balance problems.
- Loss of sense of smell (anosmia).
- Memory problems.

Diagnosis and Detection of the Parkinson's Disease

Interviewing and questionnaire method

Interviewing and questionnaire methods by trained neurologists are time-consuming, burdensome and prone to errors.

Voice based methods

The performance of voice-based methods are limited and can be altered intentionally.

Diagnosis and detection of the Parkinson's Disease

Neuroimaging methods

- Computed Tomography, PET Imaging, and Functional MRI.
- ➤ It require additional recordings, time-consuming, costly and radio-active as compared to signal processing techniques.

Signal Processing methods

- Electrocardiography(ECG), Electromyography (EMG), and Electroencephalography (EEG).
- The detection of PD using ECG and EMG signals has been accomplished but **offers** limited success in terms of classification accuracy.
- ➤ EEG signals have **yielded high performance** in the detection of PD even with its low amplitude.

Techniques for Identifying PD Using EEG Signal

- Fast Fourier Transform (FFT).
- Analysis of Variance (ANOVA) with Fast Fourier Transform (FFT).
- Discrete Wavelet Transform (DWT).
- Discrete Wavelet Transform (DWT) and Fast Fourier Transform (FFT).
- Tunable Q-Wavelet Transform (TQWT).

Proposed Method

Flow Chart of the Proposed Method.

- A Wavelet is a wave-like oscillation that is localized in time.
- It has average value of zero.

Wavelet Equation

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \, \psi\!\left(\!\frac{t-b}{a}\!\right) \ a,b \in \mathbf{R}$$

where,

a = Scaling (Dilation) Factor.

b = Shifting (Translation) Factor.

Compressed Wavelet for Extracting
High Frequency Component

Stretched Wavelet for Extracting Low Frequency Component

Right Shifted Wavelet

Different types of wavelets

 The wavelet transform is a mathematical technique which can decompose a signal into multiple lower resolution levels by controlling the scaling and shifting factors of a single wavelet function (also called "mother wavelet").

Equation for Continuous Wavelet Transform

$$T(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} \mathbf{x}(t) \, \psi^* \left(\frac{t-b}{a}\right) \, dt$$

where,

x(t) = Input/Main Signal.

a = Scaling Parameter.

b = Shifting Parameter.

Wavelet Transform (WT) vs Fourier Transform (FT)

Fourier Transform of a Rectangular Pulse

- > Fourier Transform (FT) provides global frequency information.
- > Either time or frequency can be known at a specific point.

Wavelet Transform (WT) vs Fourier Transform (FT)

Wavelet Transform

- Wavelet Transform (WT) provides specific frequency information.
- > Both time or frequency can be known at a specific point.
- For small frequency values a high resolution in the frequency domain, low resolution in the time-domain.
- For large frequency values a low resolution in the frequency domain, high resolution in the time domain.

Feature Capturing Using Wavelet Transform

- It is like a convolution operation.
- Input signal is fixed while wavelet
 is moving from left to right.

Discrete Wavelet Transforms (DWT)

- > For Continuous Wavelet Transform, scaling (a) and translation (b) are selected for every possible point which create a huge amount of data.
- > Therefore, we can only consider the discreet points of scaling (a) and translation (b) parameters for small amount of data.
- > Discrete Wavelet

$$\psi_{m,n}(k) = a_0^{-\frac{m}{2}} \psi(a_0^{-m}(k - nb_0 a_0^m))$$

$$\psi_{m,n}(k) = a_0^{-\frac{m}{2}} \psi(a_0^{-m}(k - nb_0 a_0^m)) \qquad \begin{cases} a = a_0^m & [a_0 > 1, \text{ m = width}] \\ b = nb_0 a_0^m & [b_0 > 0] \end{cases}$$

* Narrow wavelet is translated by small steps.

* Wide wavelet is translated by large steps.

Discrete Wavelet Transform

$$DWT(m,n) = f < f, \psi_{m,n} > = a_0^{-\frac{m}{2}} \sum_{k=-\infty}^{\infty} f(k) \cdot \psi^*(a_0^{-m}(k - nb_0))$$

Wavelet Transform: Filter Bank

Tunable Q Wavelet Transform Filter Bank

TQWT Analysis and Synthesis Filter Banks

Redundancy Rate:
$$\rho = \frac{\xi}{1 - \psi}$$

Quality Factor:
$$Q =$$

$$Q = \frac{2 - \xi}{\xi}$$

Maximum Number of Levels:
$$R_{max} = |\frac{\log(\frac{N}{4(Q+1)})}{\log(\frac{Q+1}{Q+1-\frac{2}{\rho}})}|$$

^{*} LPS: Low Pass Scaling (ψ), HPS: High Pass Scaling (ξ), Number of Sample (N)

A-TQWT Signal Decompositions

Typical EEG signals: (a) HC subject, and (b) its ATQWT subbands.

Typical EEG signals (a) PD subject, and (b) its ATQWT sub-bands

Classification

Performance Analysis

Table-1: Comparison of average errors obtained due to TQWT and A-TQWT techniques.

Class	TQWT	A-TQWT
НС	0.0491	3.88 X 10 ⁻⁰⁶
SF	0.0456	1.78 X 10 ⁻⁰⁵
SO	0.08903	1.10 X 10 ⁻⁰⁶

* HC: Health Control

* SF: PD [Off Medication]

* SO: PD[On Medication]

Performance Analysis

Table-2: Summary of comparison for automated detection of PD with state-of-the-art techniques.

Authors	Dataset	Method	Classifier	ACC(%)
[1]	Speech	WT, MFCC	SVM	86.64
[2]	EEG	WT	LDD	79.16
[3]	EEG	FFT	RNN	74
[4]	EEG	TVD	SVM	94.34
Proposed	EEG	A-TQWT	LSSVM	97.65, 96.13

Conclusion

- The proposed A-TQWT provides representative decomposition and reconstruction for signal analysis and synthesis.
- The proposed combination of A-TQWT and LSSVM is so effective that it outperforms existing speech, motions, and EEG-based state-of-the-art techniques.
- In future, the proposed method can be used to detect other neurological disorders like autism, Alzheimer's disease, attention deficit hyperactivity disorder and insomnia.

References

- 1] K. Smith, B. Varun, A. U. Rajendra, "Detection of Parkinson's disease using automated tunable Q wavelet transform technique with EEG signals," *Journal of Biocybernetics and Biomedical Engineering*, vol. 41, pp. 679-689, 2021.
- [2] O. Wei, H. Basah, H. Lee, V. Vijean, "Empirical Wavelet Transform Based Features for Classification of Parkinson's Disease Severity," *Journal of Medical Systems*, vol. 42, no. 12, 2017.
- [3] T. B. Drissi, S. Zayrit, B. Nsiri, "Ammoummou A. Diagnosis of Parkinson's Disease Based on Wavelet Transform and Mel Frequency Cepstral Coefficients," *International Journal Adv Computer Science Application*, vol. 10 no. 3, 2019.

Thank You

