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Abstract 
 

Skin cancer counts for one-third of all types of cancers and causes many deaths every year. Early detection of this disease could 

increase the patient's chance of survival but manually detecting cancerous skin lesions is expensive and time-consuming.  This 

raises the need for using the technology to detect skin lesions at an early stage.  Hence, an automated classification system for 

skin cancer diagnosis has proved to be a very helpful tool for dermatologist. The aim of this project is to develop a computer 

aided diagnosis system in order to detect skin lesions using deep learning and machine learning techniques. In this project, the 

ISIC2017 challenge dataset is used to classify the lesions categories such as benign, melanoma, and seborrheic keratosis. A two-

step hierarchal classification pipeline is developed: the first stage is “benign vs. others” and the second stage is “melanoma vs. 

seborrheic keratosis”. The hybrid model, a combination of Xception and Random Forest, achieves a maximum Balanced 

Multiclass Accuracy (BMA) score of 79%, outperforming the VGG16, InceptionResNetv2, and DenseNet201 architectures. Also, 

we will examine the research gaps in the skin cancer domain and address the critical challenges that require further investigation. 
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1.  Introduction 
 

Skin lesion refers to an abnormal growth or appearance on the skin that deviates from the surrounding healthy skin. There 

are two main types of skin lesions: primary and secondary. Primary skin lesions are abnormal skin conditions that can 

develop gradually or be present from birth. On the other hand, secondary skin lesions are a result of modifications or 

exacerbations of primary lesions. For instance, when a mole is scraped until it bleeds, a crust forms, resulting in a secondary 

skin lesion. Dermatologists offer different treatments for affected skin based on the type of lesion, including home care, 

medications, or surgical interventions. It is important to note that despite their seemingly innocuous appearance, certain 

skin lesions can pose significant risks to patients as they may indicate the presence of malignancy, necessitating surgical 

removal. Melanoma, in particular, is the most dangerous form of skin cancer. While it can be deadly once it has spread, 

early detection greatly increases the chances of successful treatment. Therefore, precise diagnosis of skin lesions is crucial 

to ensure timely and appropriate care for patients. The American Cancer Society estimates for melanoma in the United 

States for 2018 are: About 91,270 new melanomas will be diagnosed (about 55,150 in men and 36,120 in women). About 

9,320 people are expected to die of melanoma (about 5,990 men and 3,330 women). The rates of melanoma have been 

rising for the last 30 years. Melanoma is more than 20 times more common in whites than in African Americans. Overall, 

the lifetime risk of getting melanoma is about 2.6% (1 in 38) for whites, 0.1% (1 in 1,000) for blacks, and 0.58% (1 in 172) 

for Hispanics [1, 2]. 

 

Computer-Aided Diagnosis (CAD) systems have emerged as powerful tools in the medical field, offering the potential to 

automate analysis and provide contextual relevance, thereby improving clinical reliability and aiding physicians in making 

objective decisions. These systems hold the promise of reducing errors related to human fatigue, enhancing communication 

between healthcare professionals, lowering mortality rates, and potentially reducing overall medical costs. In the specific 

domain of dermatology, CAD systems have shown great potential in assisting with the identification and classification of 

skin lesions, particularly pigmented lesions that may be indicative of melanoma or other forms of skin cancer [3]. 

 

 

To achieve accurate classification of pigmented skin lesions, machine learning and deep learning methods have been 

extensively explored. Convolutional Neural Networks (CNNs), a type of deep learning architecture, have demonstrated 

exceptional performance in image recognition tasks [4]. In our proposed work, a range of well-established CNN 

frameworks, including VGG16, ResNet50, InceptionV3, Xception, DenseNet201, and EfficientNet, are employed to 

analyze dermoscopic images of pigmented skin lesions. These CNN models are trained on the ISIC 2017 datasets 

containing benign and malignant (melanoma and seborrheic keratosis) lesions, allowing them to learn intricate patterns and 

features that distinguish between the two classes. In addition to deep learning techniques, traditional machine learning 

classifiers are also utilized in the classification of pigmented skin lesions. Random Forest, Support Vector Machine, K 

Nearest Neighbor, XGBoost, and Gradient Boosting Machines are among the commonly used classifiers. These models 

utilize various algorithms and techniques to create decision boundaries and make predictions based on the extracted features 

from the skin lesion images.  



 

 

The ultimate goal of employing CAD systems and machine learning algorithms in the diagnosis of pigmented skin lesions 

is to detect malignant lesions as early as possible. Early detection plays a crucial role in the successful treatment and 

prognosis of skin cancer, especially melanoma, which can be life-threatening if left undetected or untreated. By accurately 

classifying skin lesions, CAD systems can aid dermatologists in making informed decisions regarding the need for further 

investigation or intervention, such as biopsies or surgical removal. The integration of CAD systems with the expertise of 

dermatologists holds tremendous potential in improving patient outcomes and healthcare delivery. By combining the 

capabilities of machine learning algorithms and the clinical expertise of dermatologists, CAD systems can provide a 

valuable second opinion, support differential diagnosis, and assist in the decision-making process. Additionally, the use of 

CAD systems in tele dermatology and remote consultations allows for enhanced access to specialized dermatological care, 

particularly for individuals in remote areas or underserved communities [5].  

 

In conclusion, the application of CAD systems and machine learning algorithms in the classification of pigmented skin 

lesions represents a significant advancement in dermatology. These technologies have the potential to improve diagnostic 

accuracy, facilitate early detection of malignant lesions, enhance communication and collaboration between healthcare 

professionals, and ultimately contribute to better patient outcomes in the fight against skin cancer. Continued research and 

development in this field will further refine and optimize CAD systems, ultimately benefiting patients and healthcare 

providers alike. 

 

 

2. Methodology 

 

This section explains the ISIC 2017 database, the distribution of the dataset, data handling and balancing methods, CAD 

classification architecture based on hybrid approach and transfer learning approach, and the evaluation metrics for classification. 

 

2.1. Dataset Description: 
 

 

The original International Skin Image Collaboration (ISIC) 2017 dataset was used for the project. The ISIC 2017 skin 

lesion dataset consists of 2000 training, 160 validation, and 600 test images representing various types of skin lesions, 

including benign, melanoma, and seborrheic keratosis lesions. The ISIC 2017 dataset has been widely used for training 

and evaluating machine learning and deep learning models in skin classification tasks. The ISIC 2017 has contributed to 

advancements in automated skin diagnosis, benchmarking algorithms, and fostering collaboration among researchers for 

improving the efficiency of early detection and treatment of skin cancer [6]. 

 

 
Table 1. ISIC 2017 Distribution 

Lesion Types Number of Images 

Train Validation Test 

Benign  1372 78 393 

Melanoma  374 30 117 

Seborrheic keratosis 254 42 90 

 

 
2.2. Data Preprocessing: 

 

The ISIC 2017 dataset images have a high resolution and different sizes (from 540x722 to 4000x6000 pixels). Here you can see 

a few image samples from the dataset. 

 

 
Figure 1. ISIC 2017 Image Samples 



 

 

This requires preprocessing the images before feeding them to the network. For each image the following preprocessing 

pipeline is applied:   

 

- Resizing the images to 128x128. 

- Normalization of dataset images. We divided each pixel value of images by 255. By dividing by 255, the pixel 

values are scaled to the range of 0 to 1. This is a common technique for normalizing pixel values in images, as it 

brings them to a standardized range. 

 

 
2.2. Data Balancing: 

 

After analyzing the ISIC 2017 dataset, we can clearly see that the training set is highly imbalanced. The number of benign 

cases is relatively higher as compared to the number of melanoma and seborrheic keratosis cases. To deal with the class 

imbalance, we downsampled the benign cases in the training set and upsampled the melanoma and seborrheic keratosis 

cases. The numpy library was used to perform data upsampling and downsampling on the training set. 

 

Since we are dealing with the two-step hierarchal classification, data handling has been implemented for Step 1 and Step 

2 of the classification hierarchy. 

 

(i) The first step of the classification hierarchy considered the binary classification between the Benign Class 

and the Other class. The Other class has been created by combining the cases of both melanoma and 

seborrheic keratosis. 

 

(ii) The second step of the classification hierarchy considered the binary classification between the Melanoma 

class and the Seborrheic keratosis class. 
 

 

To perform the first step of the hierarchal classification, we have downsampled the Benign cases to 1000 samples from 1372 

samples. Others class consisting of melanoma and seborrheic keratosis cases have been upsampled to 1000 samples from 628 

samples.  

 

To perform the second step of the hierarchal classification, we have removed the benign cases from the training set in order to do 

the melanoma vs. seborrheic keratosis classification. 

 

 

2.3. Proposed Computer Aided Diagnosis (CAD) System: 

 

For our project, Keras Applications is used as a framework. Our CAD system is developed based on a two-step binary hierarchal 

classification. Several models based on Hybrid Architecture and Transfer Learning Techniques have been evaluated. 

 

 

 

 
Figure 2. Proposed CAD system for Skin Lesion Classification 

 

 

 

 



2.3.1. Transfer Learning Approach based on Deep Learning 

 

Convolutional neural networks are at the core of most state-of-the-art computer vision solutions for a broad range of tasks. 

In this project, we implemented a Transfer Learning based approach using deep learning models for classifying skin lesions. 

Based on pre-trained Keras models of Tensorflow platform, we use the transfer learning to retrain the last few layers of the 

renowned CNN architectures for our classification problem. Due to the excellent performance of CNN models in the image 

classification competitions, improvements in the CNN architectures are very active. A series of CNN-based networks 

continue to appear, making CNN an irreplaceable mainstream method in the field of computer vision. 

 

In transfer learning architecture, the pre-trained CNN models act as a feature extractor. The initial layers of the models, 

which learn low-level and generic features, are retained, while the later layers, which are more task-specific, are fine-tuned 

to classify the skin lesions. 

 
 

2.3.1.1. Convolutional Neural Networks 

 

A convolutional neural network is a network architecture for deep learning [7,8]. CNNs are deep artificial neural networks [9] 

that are primarily used to classify images cluster them by similarity and perform object recognition [9] within scenes. A CNN is 

comprised of one or more convolutional layers followed by one or more fully connected layers as in a standard multilayer neural 

network. It learns directly from images. CNN can be trained to do image analysis tasks including classification, object detection, 

segmentation, and image processing. CNNs are made of several types of layers, like Convolutional Layer, Non-Linearity Layer, 

Rectification Layer, Rectified Linear Units (ReLU), Pooling Layer, Fully Connected Layer and Dropout Layer. 

 

The Visual Geometry Group of Oxford proposes the VGG network. The network uses a deeper network structure with depths of 

11, 13, 16, and 19 layers. Meanwhile, VGG networks use a smaller convolution kernel (3×3 pixels) instead of the larger 

convolution kernel, which reduces the parameters and increases the expressive power of the networks [10]. 

 

ResNet solves the "degradation" problem of deep neural networks by introducing residual structure. ResNet networks use multiple 

parameter layers to learn the representation of residuals between input and output, rather than using parameter layers to directly 

try to learn the mapping between input and output as VGGs networks do. Residual networks are characterized by ease of 

optimization and the ability to improve accuracy by adding considerable depth [11]. 

 

The inception-V3 network is mainly improved in two aspects. Firstly, branch structure is used to optimize the Inception Module; 

secondly, the larger two-dimensional convolution kernel is unpacked into two one-dimensional convolution kernels. This 

asymmetric structure can deal with more and richer spatial information and reduce the computation [12]. 

 

The Inception-ResNet network is inspired by ResNet, which introduces the residual structure of ResNet in the Inception module. 

Adding the residual structure does not significantly improve the model effect. But the residual structure helps to speed up the 

convergence and improve the calculation efficiency. The calculation amount of Inception-ResNet-v1 is the same as that of 

Inception-V3, but the convergence speed is faster [13]. 

 

Xception is an improvement of Inception-V3. The network proposes a novel Depthwise Separable Convolution align them in 

column, the core idea of which lies in space transformation and channel transformation. Compared with Inception, Xception has 

fewer parameters and is faster [14]. 

 

The DenseNet network is inspired by the ResNet network. DenseNet uses a dense connection mechanism to connect all layers. 

This connection method allows the feature map learned by each layer to be directly transmitted to all subsequent layers as input, 

so that the features and the transmission of the gradient is more effective, and the network is easier to train. The network has the 

following advantages: it reduces the disappearance of gradients, strengthens the transfer of features, makes more effective use of 

features, and reduces the number of parameters to a certain extent [15]. 

 

EfficientNetV2L is an advanced deep learning architecture from the EfficientNet family. It focuses on depth-wise separable 

convolutions and uses compound scaling to balance model size and performance. It introduces improvements like SELU and 

scaled Swish activations. By scaling width, depth, and resolution, it achieves state-of-the-art results in computer vision tasks 

while considering resource constraints. EfficientNetV2L is a compact and efficient solution for various deep learning applications 

[16]. 

 

ConvNeXt Xlarge is a deep learning architecture that enhances convolutional neural networks by introducing grouped 

convolutions. It divides input channels into groups and performs convolutions separately on each group. This approach increases 

model capacity without significantly increasing computational cost. ConvNeXt Xlarge achieves state-of-the-art results on various 

computer vision tasks by effectively capturing both local and global features. It is a scalable and efficient architecture that offers 

improved performance in deep learning applications [17]. 

 

 

 



 

2.3.1.2. Experimental Environment for the Training 

 

The comparative experiments are performed on the local computer. The computer hardware configuration is shown in Table 2. 

The computer software configuration is as follows: Windows 11 Professional operating system, Python 3.6, and Jupyter 

Notebook.  

 
Table 3. Computer hardware configuration 

Hardware Product Name 

CPU Intel(R) Core (TM) i7-1185G7 

GPU Intel Iris Xe 

RAM 16 GB 

 

 

The experiment mainly uses deep learning models and some relatively novel deep learning models. The hyperparameters 

uniformly set by these models are shown in Table 4.  

 

 
Table 4. Deep Learning Model Parameters 

Parameters Value 

Batch Size 16 

Epochs 10 

Learning Rate 0.001, 0.005 [varies] 

Optimizers Adam, SGD 

 

 

(i) The goal of the optimizer is to update the parameters of a model iteratively in order to minimize the loss 

function and improve the model's performance. 

 

(ii) This learning rate parameter specifies the learning rate for the optimizer. The learning rate determines the 

step size taken during optimization. It controls how much the weights of the model are updated based on the 

calculated gradients. 

(iii) Batch size refers to the number of training examples or data points that are processed together in a single forward 

and backward pass during the training of a neural network. It is one of the hyperparameters that need to be defined 

before training a model. During each iteration of the training process, the batch size determines the number of 

samples that are propagated through the network and used to compute the gradient for updating the model's 

parameters.  

 

(iv) In deep learning, an epoch refers to a complete iteration over the entire training dataset during the model training 

process. In other words, it represents the number of times the model has seen and processed the entire training 

dataset. 

 

 

In addition, we have used the binary cross entropy loss function for our classification purpose. It measures the dissimilarity 

between the predicted probability distribution and the true binary labels. The formula can be expressed as: 

 

Binary Cross Entropy = - (y * log σ (p) + (1 - y) * log(1 - σ (p)) 

 

where p is the prediction of the model, y is the ground and σ is the sigmoid function. 

 

 

 

 



2.3.2. Hybrid Approach based on Deep Learning and Machine Learning 

 

In hybrid architecture, different Deep Learning models have been used for feature extraction stage, while the machine 

learning models serve as the classifier in the subsequent stage. The following ML classifiers were trained: Random Forest 

(RF), Naïve Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), K-Nearest 

Neighbors (KNN), Gradient Boosting Machine (GBM), XG-Boost (XGB). 
 

 
(i) Random Forest 

 

The Random Forest Classifier is a popular ensemble learning algorithm that combines multiple decision trees to make 

predictions. 

 

Its best parameters are found through the grid search method among the different options. 

 

- n_estimators parameter specifies the number of decision trees in the random forest ensemble. In our case, we are 

using 100 trees. 

- random_state parameter sets the random seed for reproducibility, ensuring that the same random numbers are 

generated each time the code runs. 

 

 
(ii) Naïve Bayes Classifier 

 

One of many ways to solve the skin lesion classification problem is by using Naïve Bayes. Naïve Bayes uses Bayes 

Theorem, which for our classification problem, gives us: 

𝑃(𝑙𝑎𝑏𝑒𝑙 | 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) =  
𝑃 (𝑙𝑎𝑏𝑒𝑙) 𝑥 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 |𝑙𝑎𝑏𝑒𝑙) 

𝑃 (𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)
 

 
 

(iii) Support Vector Machine Classifier 

This algorithm works on a simple strategy of separating hyperplanes. Given training data, the algorithm categorizes the 

test data into an optimal hyperplane. The data points are plotted in a n-dimension vector space (n depends upon the features 

of the data points). SVM algorithm is used for binary classification and regression tasks but in our case, we have a 2-step 

hierarchical binary classification. We adopt the pairwise classification technique where each pair of classes will have one 

SVM classifier trained to separate the classes. The overall accuracy of this classifier will be the accuracies of every SVM 

classification included. Then on performing classification we find a BMA that defines the overall performance of the model 

on all the classes very well. 

 

(iv) Logistic Regression Classifier 

This algorithm was named after the core function used in it that is the logistic function. The logistic function is also known 

as the sigmoid function. It is an S-shaped curve that takes real values as input and converts it into a range between 0 and 

1. The sigmoid function is defined as follows: 

𝑆(𝑥) =  
1

1 + 𝑒−𝑥
=  

𝑒𝑥

𝑒𝑥 + 1
 

 

(v) Decision Tree Classifier 

The Decision tree classification approach is a technique that makes classification predictions by carrying out a series of 

true or false decisions. The decision tree approach is the foundation for the implementation of Random Forest. A Decision 

Tree is a flowchart-like tree structure, in which each internal node represents a test on an attribute and each branch 

represents an outcome of the test, and each leaf node represents a class. 

 

 

 



(vi) K Nearest Neighbors Classifier 

KNN Classifier is an instance-based learner used for both classification and regression tasks. This algorithm does not use 

the training data to make any generalizations. It is based on feature similarity. A test sample is classified based on a majority 

vote of its neighbors; the class assigned to the test sample is the most common class among k nearest neighbors. When 

used for regression the output value is the average of the outputs of its k nearest neighbors. This classifier is a lazy learner 

because nothing is done with the training data until the model tries to classify the test data. We have taken the k value to 

be 3 which gave us the most accurate result. The k value must not be too large in that it includes the noise points or points 

that belong to the neighboring class. 

 

(vii) Gradient Boosting Machine Classifier 

The Gradient Boosting Machine (GBM) algorithm works by iteratively building an ensemble of weak learners, usually 

decision trees, to correct errors made by the previous models. It optimizes the model by training each weak learner to 

predict the negative gradient of the loss function with respect to the residuals. The algorithm updates the model's prediction 

by combining the predictions of all weak learners. GBM is capable of capturing complex patterns and delivering accurate 

predictions, but it requires tuning of hyperparameters to prevent overfitting. 

 

(viii) XGBoost Classifier 

XGBoost, short for Extreme Gradient Boosting, is a highly efficient implementation of the Gradient Boosting Machine 

(GBM) algorithm. It works by iteratively adding weak learners (decision trees) to form a strong ensemble model. XGBoost 

improves upon traditional GBM by incorporating regularization techniques, gradient-based optimization, and efficient 

parallel processing. It handles missing values, performs tree pruning for better generalization, and provides feature 

importance analysis. With its excellent performance and scalability, XGBoost has become a popular choice for various 

machine learning tasks, achieving high accuracy in competitions and real-world applications. 

 

2.4. Evaluation Metrices 

 

To scientifically evaluate the classification performance of our proposed model, choosing appropriate indicators is a crucial 

factor. We have used the following metrices given below: - 

 

 

(i) Balanced Multiclass Accuracy (BMA) 

 

𝐵𝑀𝐴 =
1

𝑀
∑

𝑡𝑝𝑚

𝑛𝑚

𝑀

𝑚=1

 

 

Here 𝑀 is number of classes (3 in our case), 𝑡𝑝m is number of true positives of class 𝑚, and 𝑛𝑚 is number of samples of 

class 𝑚. 
 

 

(ii) Accuracy 

 

The accuracy is the proportion of the total number of predictions that were correct. Accuracy is calculated as the number 

of all correct predictions divided by the total number of the dataset. It is determined using the equation: 

 

Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 

 

 
 

(iii) Sensitivity 

 

The true positive rate (TPR) or Sensitivity is the proportion of positive cases that were correctly identified. TPR or Recall 

is calculated as the number of correct positive predictions divided by the total number of positives, as calculated using the 

equation: 

 

Sensitivity =  
𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 

 
 



(iv) Specificity 

 

Specificity, also known as the True Negative Rate (TNR), is a metric used in binary classification to measure the proportion 

of actual negative cases that are correctly identified as negative. It quantifies the model's ability to correctly classify 

negative samples. Specificity is calculated as the number of true negative predictions divided by the total number of 

negatives, expressed using the equation: 

 

Specificity =  
𝑇𝑁

𝑇𝑁+ 𝐹𝑃
 

 

3. Results and Discussion 

 

 

The evaluation of the research is based on the BMA, accuracy, sensitivity, and specificity. Various machine learning and 

deep learning techniques have been implemented in order to find the best-fit algorithms for the system. Each model was 

tested on the 600 images of the ISIC2017 test set. The results are summarized in the table. 

 
Table 4. Performance details of different deep learning models based on Transfer Learning approach. 

Model Optimizer  Learning 

Rate 

Benign vs Other Melanoma vs Seborrheic 

Keratosis 

BMA 

Accuracy  Sensitivity Specificity Accuracy  Sensitivity Specificity 

VGG16 Adam 0.005 0.72 0.90 0.38 0.70 0.71 0.68 0.76 

SGD 0.005 0.72 0.83 0.52 0.70 0.66 0.76 0.75 

          

ResNet50 Adam 0.005 0.64 0.76 0.40 0.62 0.51 0.76 0.64 

SGD 0.001 0.48 0.23 0.97 0.58 0.97 0.07 0.42 

          

Inception V3 Adam 0.001 0.66 0.64 0.71 0.71 0.80 0.60 0.68 

SGD 0.001 0.70 0.72 0.66 0.69 0.79 0.58 0.69 

          

InceptionResNetv2 Adam 0.005 0.77 0.83 0.64 0.67 0.53 0.86 0.74 

SGD 0.005 0.77 0.79 0.75 0.74 0.75 0.73 0.76 

          

Xception Adam 0.001 0.73 0.80 0.58 0.72 0.70 0.74 0.75 

SGD 0.001 0.72 0.73 0.69 0.75 0.83 0.66 0.74 

          

DenseNet201 Adam 0.005 0.69 0.75 0.58 0.75 0.71 0.82 0.76 

SGD 0.001 0.66 0.62 0.73 0.70 0.76 0.62 0.67 

          

EfficientNetV2L Adam 0.005 0.64 0.94 0.07 0.56 1.00 0.00 0.65 

SGD 0.005 0.36 0.03 0.99 0.57 1.00 0.00 0.34 

          

ConvNeXtXLarge Adam 0.005 0.62 0.73 0.45 0.62 0.68 0.70 0.66 

SGD 0.005 0.65 0.71 0.53 0.65 0.71 0.62 0.63 

 
Performance Analysis of Transfer Learning Models: 

 

In the case of BMA, the highest score 0.76 was obtained by the VGG16 with Adam, InceptionResNetV2 with SGD, and 

DenseNet201 with Adam models. However, Xception with both Adam and SGD, InceptionResNetV2 with Adam, and VGG16 

with SGD scored 0.75, 0.74, and 0.75 respectively, which is very close to the maximum performance. On the other hand, 

ResNet50 with SGD and EfficientNetV2L with SGD provided the minimum score of 0.42 and 0.34 respectively. The performance 

of Inception V3 and ConvNeXtXLarge were average with both Adam and SGD optimizer and obtained the BMA scores of 0.68, 

0.69, 0.66 and 0.63 respectively.  

 

In the case of benign and other classes, InceptionResNetv2 with both Adam and SGD optimizer provided the highest accuracy 

score of 0.77 whereas the accuracy scores obtained by the ResNet50 with SGD and EfficientNetV2L with SGD were 0.48 and 

0.36, which is the minimum. 

 

In the case of melanoma and seborrheic keratosis, Xception with SGD and DenseNet201with Adam provided the highest accuracy 

score of 0.75 whereas the accuracy scores obtained by the EfficientNetV2L with SGD and Adam were 0.56 and 0.57, which is 

the minimum. 

 

It is clear from the above table that VGG16, InceptionResNetv2, and DenseNet201 outperformed other models. 



 

 

 

 
 

Figure 3. Area under the ROC Curves for benign vs others class and melanoma vs seborrheic keratosis class of the best Transfer 

Learning models (VGG16, InceptionResNetv2, DenseNet201).   

 

 
Table 5. Performance details of different hybrid models based on deep learning and machine learning classifiers. 

Feature Extractor Classification Model Benign vs Other Melanoma vs Seborrheic 

Keratosis 

BMA 

Accuracy  Sensitivity Specificity Accuracy  Sensitivity Specificity 

VGG16 Random Forest 0.70 0.79 0.53 0.73 0.64 0.84 0.76 

Naïve Bayes 0.44 0.35 0.62 0.58  0.41 0.80 0.52 

Support Vector 

Machine  

0.67 0.73 0.61 0.65 0.61 0.71 0.68 

Logistic Regression  0.70 0.72 0.64 0.68  0.60 0.79 0.70 

Decision Tree 0.63 0.69  0.51 0.55 0.57 0.52 0.59 

K Nearest Neighbors 0.62 0.49 0.86 0.68 0.62 0.77 0.62 

Gradient Boosting 

Machines 

0.73 0.76 0.71 0.74 0.64 0.88 0.76 

XGBoost 0.71 0.78 0.56 0.55 0.57 0.52 0.63 

         

ResNet50 Random Forest 0.68 0.83 0.39 0.64 0.68 0.59 0.70 

Naïve Bayes 0.39  0.10 0.94 0.50 0.14 0.98 0.40 

Support Vector 

Machine  

0.64 0.59 0.72 0.67 0.56 0.80 0.65 

Logistic Regression  0.62 0.54 0.76 0.64 0.62 0.68 0.61 



Decision Tree 0.62 0.69 0.50 0.63 0.64 0.61 0.65 

K Nearest Neighbors 0.60 0.54 0.71 0.63 0.71 0.52 0.59 

Gradient Boosting 

Machines 

0.65 0.66 0.63 0.61 0.60 0.62 0.63 

XGBoost 0.70 0.76 0.58 0.63 0.64 0.61 0.67 

         

Inception V3 Random Forest 0.70 0.85 0.42 0.75 0.78 0.71 0.78 

Naïve Bayes 0,60 0.51 0.79 0.64 0.64 0.64 0.60 

Support Vector 

Machine  

0.67 0.69 0.62 0.67 0.61 0.76 0.68 

Logistic Regression  0.68 0.70 0.65 0.70 0.66 0.74 0.70 

Decision Tree 0.61 0.71 0.43 0.60 0.57 0.63 0.64 

K Nearest Neighbors 0.59 0.50 0.75 0.65 0.82 0.43 0.59 

Gradient Boosting 

Machines 

0.72 0.75 0.66 0.72 0.74 0.70 0.73 

XGBoost 0.72 0.79 0.58 0.60 0.57 0.63 0.66 

         

InceptionResNetv2 Random Forest 0.72 0.82 0.53 0.73 0.74 0.71 0.76 

Naïve Bayes 0.57 0.44 0.81 0.71 0.66 0.79 0.63 

Support Vector 

Machine  

0.73 0.76 0.68 0.67 0.66 0.68 0.70 

Logistic Regression  0.75 0.77 0.71 0.71 0.70 0.71 0.73 

Decision Tree 0.63 0.70 0.51 0.71 0.68 0.76 0.71 

K Nearest Neighbors 0.58 0.48 0.77 0.69 0.79 0.55 0.61 

Gradient Boosting 

Machines 

0.71 0.73 0.68 0.75 0.71 0.80 0.75 

XGBoost 0.73 0.78 0.63 0.71 0.68 0.76 0.74 

         

Xception Random Forest 0.70 0.82 0.47 0.76 0.74 0.80 0.79 

Naïve Bayes 0.56 0.48 0.72 0.71 0.74 0.69 0.63 

Support Vector 

Machine  

0.68 0.73 0.59 0.73 0.72 0.74 0.74 

Logistic Regression  0.70 0.75 0.62 0.72 0.70 0.74 0.73 

Decision Tree 0.60 0.65 0.50 0.70 0.66 0.76 0.69 

K Nearest Neighbors 0.56 0.46 0.75 0.70 0.82 0.54 0.60 

Gradient Boosting 

Machines 

0.70 0.72 0.67 0.72 0.68 0.77 0.72 

XGBoost 0.70 0.77 0.57 0.70 0.66 0.76 0.73 

         

DenseNet201 Random Forest 0.76 0.79 0.69 0.72 0.66 0.80 0.75 

Naïve Bayes 0.62 0.50 0.86 0.64 0.46 0.87 0.61 

Support Vector 

Machine  

0.69 0.69 0.67 0.74 0.69 0.80 0.73 

Logistic Regression  0.69 0.69 0.68 0.74 0.70 0.80 0.73 

Decision Tree 0.62 0.65 0.55 0.67 0.64 0.71 0.67 

K Nearest Neighbors 0.68 0.63 0.76 0.75 0.87 0.59 0.70 

Gradient Boosting 

Machines 

0.70 0.66 0.76 0.78 0.72 0.87 0.75 

XGBoost 0.73 0.76 0.69 0.67 0.64 0.71 0.70 

         

EfficientNetV2L Random Forest 0.61 0.78 0.30 0.61 0.67 0.53 0.66 

Naïve Bayes 0.56 0.48 0.72 0.52 0.54 0.50 0.53 

Support Vector 

Machine  

0.55 0.55 0.56 0.58 0.63 0.52 0.57 

Logistic Regression  0.53 0.51 0.56 0.60 0.63 0.56 0.57 

Decision Tree 0.55 0.64 0.38 0.59 0.65 0.51 0.60 

K Nearest Neighbors 0.47 0.39 0.61 0.52 0.71 0.28 0.46 

Gradient Boosting 

Machines 

0.55 0.62 0.42 0.60 0.68 0.50 0.60 

XGBoost 0.61 0.79 0.27 0.59 0.65 0.71 0.65 

         

ConvNeXtXLarge Random Forest 0.69 0.83 0.43 0.65 0.69 0.58 0.70 

Naïve Bayes 0.46 0.30 0.76 0.49 0.28 0.77 0.45 

Support Vector 

Machine  

0.59 0.55 0.56 0.62 0.56 0.70 0.60 

Logistic Regression  0.60 0.56 0.67 0.63 0.66 0.59 0.60 

Decision Tree 0.57 0.64 0.44 0.57 0.60 0.53 0.59 



K Nearest Neighbors 0.58 0.50 0.73 0.58 0.66 0.48 0.55 

Gradient Boosting 

Machines 

0.68 0.75 0.55 0.66 0.63 0.69 0.69 

XGBoost 0.70 0.79 0.54 0.57 0.60 0.53 0.64 

 

Performance Analysis of Hybrid Models: 

 

In the case of BMA, the highest score 0.79 was obtained by the Xception – Support Vector Machine and Xception – Gradient 

Boosting Machines hybrid models. However, InceptionV3 – Random Forest hybrid model scored 0.78, which is very close to the 

maximum performance. In addition, VGG16 – Random Forest, InceptionResNetv2 – Random Forest, and DenseNet201–Random 

Forest  provided  scores of 0.76, 0.75, and 0.75. 

 

In the case of benign and other classes, the highest accuracy score of 0.76 was obtained by the DenseNet201–Random Forest 

hybrid model whereas in the case of melanoma and seborrheic keratosis, the best accuracy score of 0.78 was obtained by the 

DenseNet201– Gradient Boosting Machines hybrid model. 

 

It is clear from the above table that the Xception – Support Vector Machine hybrid model outperformed other models. In addition, 

the table 4 and 5 show that the hybrid model performed more better than the transfer learning model. The height BMA score 

obtained by the hybrid model was 0.79 and the maximum BMA score obtained by the transfer learning model is 0.76. 

 

 

 
 

Figure 4. Confusion matrix for benign vs others class and melanoma vs seborrheic keratosis class of the best hybrid models (Xception-

Random Forest, InceptionV3-Random Forest).   

 

 

6. Conclusion 

 

In this project, the tasks of skin lesion classification were addressed using two different approaches: Transfer Learning method 

followed by the Hybrid Method. The classification task was challenging for different reasons such as the different artifacts present 

in dermoscopy images, high resolution and the heterogeneity of the lesions. However, the results show a potential of improvement 

in this task especially using hybrid technique. Possible future work includes more optimization and preprocessing in the feature 

engineering step of machine learning, further fine tuning of the model parameters in deep learning. It is clear that some models 

performed outstanding with benign and others classes and some models performed better with melanoma and seborrheic keratosis 

classes. Therefore, a new model with the combination of the best performed model with benign and others classes and melanoma and 

seborrheic keratosis classed can be proposed in future. 
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